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Abslracr We use marlingale methods and simple convexity argumenls to compute 
rigorously the limiting free energy in the problem of directed polymers on a tree. The 
limil is a degenerate random variable and convergence holds almost surely. The only 
assumplion on the common distribution 01 the random potentials attached to the bonds 
of the wee is thal i l l  Laplace transform exists everywhere in [O,m). 

1. Introduction 

Directed polymers in random media have received much attention in recent years 
11-81. The problem can be described as follows: a directed random walk takes place 
on a regular lattice; independent identically distributed energies are attached to each 
bond of the lattice, and paths are given a Gibbs weight corresponding to the sum 
of the energies of the visited bonds. The main object of interest is the effect of the 
disorder on the asymptotic properties of the walk; typically, one expects a transition 
from a diffusive regime at high temperature to a superdiffusive behaviour at low 
temperature (see [3] and references quoted therein). 

Because the above problem remains largely open as far as rigorous derivations are 
concerned, it is of interest to consider simplied models. The case where the lattice is 
replaced by a Cayley tree is sufficiently rich to give rise to a phase transition (in this 
model it is the free energy rather than the mean square displacement which is the 
central object). It has been studied by various heuristic methods such as the replica 
argument [7l, an extrapolation of the properties of the generalized random energy 
model [6] and an analogy with known properties of branching diffusions [2]. Our 
treatment, which is based on martingales, has the advantage of being both rigorous 
and transparent It is only fair to point out that the calculation of the ground state 
energy of our model (i.e. the zero-temperature limit of the free energy) is substantially 
the same as a question known in the theory of branching processes as the first birth 
problem, and solved in [9]. 

Apart from its connection with the original directed walk question, the tree 
problem can also be seen as a generalization of the random energy model introduced 
in [lo] as a caricature of spin glasses and solved rigorously in [11,12]; in this last 
model the energies of differentpaths are independent, in sharp contrast with the tree 
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problem. It is all the more remarkable that our approach produces a solution which 
is rather less intricate than either Ill] or [12]. 

E Buffet, A Patrick and J V Puli 

2. Description of the problem 

Consider a Cayley tree with branching ratio two; label the bonds of the tree by two 
integers ( j ,  k) where j identifies the generation and k E {I,. . . ,2j} numbers the 
bonds from left to right within the j th  generation. 

k: 1 2 3  4 5  6 7  8 

Figure 1. Labelling the bonds of the trec. 

Apath w starting at the top of the tree and of length lwl = n is a finite sequence 
{( j ,wj) ,  1 < j < n) obeying the constraint wj+l = 2wj + s j ,  where the numbers 
sj E {-1,O) correspond to taking the left or right branch out of generation j .  

Attach independent identically distributed random variables Vj,k to the bonds of 
the tree. The only assumption that we make on the common distribution of the Vj,k 
is that their negative part falls off sufficiently fast to ensure that the function 

exists for all p 2 0. The infinite differentiability of + ( p )  follows from this assumption. 
= ~ [ e - ” l  (1) 

The central object of our investigations is the (random) purtiticm function 

(2) z,(p) = e-PCX~vi,wj 
w:lwl=n 

and in particular the large n limit of thefree energy densify ( l / p n )  log Z,(p). 

3. The main results 

Note that even though the random variables %,k are mutually independent, the 
exponents E;=, y,wj and E;=, Y,,,; in (2) are not in general independent for 
different paths w, w‘. Thus, in contrast to  [ll, 121 the partition function is not a sum 
of independent random variables. However the dependence between the summands 
is of a very special type; let 

denote the set of all the random variables y,k between generations 1 and n. Define 

Then we have: 

V n  = {vj,li,l < l c < 2 j , l  < j  < n} (3) 

K ( P )  = zn(m/(24(P))n. (4) 
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Proposilion 1. The sequence {Mn(P),n 2 1) is a martingale with respect to the 
increasing family of random variables {!In, n 2 l}, that is to say 

where the left-hand side is the conditional expectation of Mntl(p) given all the 
random variables in V,. 

Proof. 

zntl(p) = e-@% "J*Y> e-@"n+t,z-=t*n (6) 
w:lwl=n s,=-l.O 

so that 

EIZntl(p)lV"] = e-@c;=I "3mY.E [ e-@"m+l,Z~~+.~ ] (7) 
UI:IuII=o 3,=-1.U 

= 24(P)Z,(P). (8) 

Divide by (24(p))"+' to obtain the result. Note that E[M,(P)] = 1. 0 

Remark. It is fairly common for the normalized partition function of a random 
system to be a martingale, see [4,13]. This properly is usually of limited value unless 
it is accompanied by boundedness of some moment of order larger than one (or 
more genemlly uniform integrability). The proof of such a bound is highly model- 
dependent and constitutes the core of any study of a random system by the method 
of martingales, see proposition 2. 

Since M n ( p )  is a positive martingale, it converges almost surely to a finite random 
variable M m ( p ) ,  see [14]. But, noting that 

we see that 

1 1 limsup - log Z,(P) < log[Z4(P)] a s .  
n-m Pn 

and moreover, if M,(p) is strictly positive with probability one 

(12) 
1 1 lim -IogZ,(p) = pIog[2$((p)] a s . .  

n-m p n  

In common with other limits of non-negative polymer-related martingales (see [4,13]) 
the limit random variable is either strictly positive or concentrated at zero. 
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Lemma 1.  For any k e d  p 2 0, P [ M , ( P )  = 01 is equal to either zero or one. 

Proof. Let L, (respectively R,) denote the set of paths of length n which start with 
a branch in the left (respectively right) direction. From the formula 

E Buffet, A Patrick and J V Puli 

it is clear that the event and yz; one 
can see in the same way that it is independent of V, for every p. The result follows 

U 

Remark. The above argument cannot be applied to show that P[M,(p) > z] is 
either 0 or 1; in general the random variable M,(P) is not degenerate. 

Mn(p) = 0) is independent of 

from Kolmogorov's zeroone law [14]. 

Using lemma 1, it suffices to know that E[M,(P)] > 0 to conclude that 
P[M,(p)  = 01 = 0, and consequently that (12) holds. Hence the logic of the 
rest of the proof: show that, in the appropriate range of values of p, M,,(p) has a 
bounded moment of order larger than one, i.e. 

supE[M,"(P)] < cc for some a > 1. (14) 
*>I 

This will ensure that M,(p)  is uniformly integrable and thus that it converges to 
M,(p) in L', implying E[M,(P)] = 1 and thus ruling out M,(P) = 0. We start 
by computing the second moment. 

Lemma 2. 

E[M;+,(P)IV"l = M;(P) + x (P) [~ (zP) /24Z(P)1 "Mn(zP)  (U) 

where A(@) is the non-negative function 

Proof. This is a straightfonvard calculation along the lines of proposition 1. U 

Remark. %king expectations across formula (IS) and summing over n, it follows 
that 

supE[M:(P)] < cc whenever 4(2,0) < 24'(P). (17) 
kgl 

This provides a sufficient condition for the uniform integrability of A4,(p); however, 
this condition falls short of the optimal result that we will derive in proposition 2 
using the following elementary observation: 
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Lemma 3. For any real numbers xj. 1 6 j 6 a the function (xy=le-Pxj)l/P is 
decreasing in 0, ( p  2 0). 

proof. Obviously 

so that if p' 2 p 

Sum over j and use elementary manipulations to obtain 

U 

Proposition 2. Define 

(21) 
1 

f ( P )  = 3 k m ( P ) 1 .  

For every p such that f ' ( P )  < 0, there exists 01 > 1 such that s ~ p , , ~ E [ M : ( p ) ]  < , 
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Taking expectations across and summing over n we get 
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- 
k-1 

E[M?(P)I < E[MP(P)I  t A"%') ~[24(@)/(24(p))T.  (28) 
n=l 

This shows that 

whenever 

24(aP) < (24(P))". (30) 

24(@)/(24(P)Y = e x p l C " P )  - f(P))1 (31) 

'lb complete the proof, it suffces to note that 

so that if f'(P) < 0 there exists CY > 1 such that (30) holds. The bound (29) with 
01 > 1 is well hovm to imply uniform integrability of M,, (p )  [14]. 0 

In view of the above result, we need to characterize the possible shapes of the 
graph of f ( P ) .  
Lemma 4. Either there exists p, > 0 such that the function f(P) is strictly 
decreasing on (O,&) and strictly increasing on ( ~ , , c o ) ,  or the function f (P)  is 
strictly decreasing on ( 0 , ~ ) .  

Proof. If the random variable V is concentrated at a point, f(P) is trivially strictly 
decreasing. In all other cases, Pf(P) is strictly convex, so that for evely p, Po with 
P # Po 

In particular, if f has a local extremum at 0, 

P f ( P )  > Pf(P,) for all P f P, (33) 

so that p, is the unique value where f achieves its global minimum. Finally, in the 
absence of a local extremum, f is strictly monotonic; since f(P) -+ 03 as -+ 0, f 

Remarks. (i) We will denote by 0, the value at which f(P) takes its minimum, with 
the convention P, = CO if no such local minimum exists. 
(U) As an illustration of the lemma consider the case where V is exponentially 
distributed with parameter A; we have in this case 

must be strictly decreasing. 
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Figure 2. The function f(P) when V is exponentially distributed. 

and @, is the unique solution of 

2x P log - = _- 
@ + A  @ + A '  

The graph of f( @) is shown in figure 2. 

of lemma 3 

Lemma 5. For any real numbers z j  ,1  < j < n, the function 

In preparation for the main theorem, we note the following simple consequence 

is decreasing and convex in p. 

Proof. Decreasingness follows from lemma 3. Moreover 

proving convexity. 
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We can now state and prove the main result of this article: 

Theorem I. The following limit holds almost surely 

where p, is defined as in the last remark. 

Proof. (i) When 0 < p,, f ' ( P )  < 0 so that proposition 2 is valid; hence 
E [ M , ( P ) ]  = 1 and so, using lemma 1, the result follows as in (lo), (12). 

What we have just shown can be restated as follows; define 

Then 

p[RB] = 1 whenever 0 < P < P,. 

For the second part of the proof we need the stronger result 

p ~ u < ~ " , p c  "PI = (42) 

which can be proved as follows: first consider a countable dense set I in (O,p,). It 
follows clearly from (42) that 

P [  n R, ]= l .  (43) 
B E T  

Next consider an arbitrary w E n3,,R3; for any pu E (O,p,) construct sequences 
PE I Pu and P i  /" & , p i ,  P i  E I. For any w in nBErRg we deduce from 
lemma 5 

Let k /" 03 and conclude that w E Rp,. Thus nBEIR3 = R and (42) 
follows from (43). 
(E) When 2 0, we have no guarantee that Mn(P) is uniformly integrable, so that 
the above method fails; in fact it turns out that M m ( P )  = 0 when p > PC, see the 
remark following this proof. However, using the decreasingness in lemma 5, we have 
for every E > 0 
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so that using (i) we have 

1 limsup-logZ,(P) < f ( P , - c )  a s . .  
n-m On 

1831 

(47) 

On the other hand, using the convexity result in lemma 5 we have, for every E > 0 

where 

By (i), for almost every sample point w in R the sequence of convex functions 

(50) 
1 
- 1% Z,(P)(w) 
Pn 

P < P c  

converges to the differentiable function f(P); hence their derivatives converge to 
f'(P), so that (47) implies 

Noting that E is arbitrary in (47) and (51) and that lime-" f'(& - E )  = 0, the result 
follows. 

Remark. When P > P, 

so that by (12), M,(P) must have a non-vanishing probability of being equal to zero 
and is thus concentrated at zero by lemma 1. In fact when p > 0, theorem 1 implies 

which shows that M , ( P )  converges to zero exponentially fast when 
Convergence holds also in Lp if we supplement our standing assumption of 

finiteness of E[e-@"], P 2 0 with that of the existence of appropriate moments 
of V; the following proof is adapted from that of the corresponding result for the 
random energy model in [lZ]: 

Theorem 2. The limit of theorem 1 holds also in Lp whenever EIIVIptc] < 00 for 
some E > 0, p 2 1. 

> 0,. 
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Proof. As is well known (see [15]), it suffices to check that for fixed P , p  the random 
variables I( l/pn) log Zn(p)Ip are uniformly integrable. Denote by E: the ground 
state energy 

E Buffet, A Patrick and J V Puli 

E: =min{Ew, lwl=n} (54) 

where 

is the energy of the path w. 
Because of the obvious inequalities 

log2 1 1 1 
n n 'pn  P n  

-E: - -E" < -logz,(p) < - - 

it suffices to prove that for fixed p, ((l/n)E:)P are uniformly integrable random 
variables, that is to say 

In (57) we made use of the notation 

E [ X ,  A] = E[XI,] (58) 

where X is a random variable and A an event with indicator function I,. Note that 
if X and a are positive 

The first term satisfies (57) because for any path w of length n, E: < E, so that 

and ((l/n)E,)P is uniformly integrable because 
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As for the second term in (60), it can be rewritten as follows by (59) 

P[E:  < - n ~ ’ / ~ ] d z  + aP[E:  < -na”P]. 

But note that 

PIEO, < 4 = P[u,:,w,,,{Ew Q .)I < ZRP[E, < 4 
< ~ ~ e ‘ ~ [ e - ~ - ]  = ( ~ ~ [ e - ~ ] ) ” e ” .  

Hence (63) is bounded above by 

( ~ [ e - V ] ) “ ( / m e - ” I ” p  dr + ae-no’” 
U 

< (2&’[e-V]e-(””’)/Z)h ( im e-(REI’’)/Z d r  + ae-(*””)/Z 

The above expression attains its maximum over TI at TI = 1 for a large enough, and 
this maximum value tends obviously to zero when a tends to infinity. This completes 

0 

Remark. As all the results in this article, the above theorem holds for trees with 
arbitrary branching ratio K provided that the definition (21) of f is replaced by 

the proof of (57) and of the theorem. 

f ( P )  = ( U P )  los[lc4(P)1. 
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